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Abstract

Significant damping of structural vibration can be attained by coupling to the structure a low-density medium (such as a

powder or foam) in which the speed of sound propagation is relatively low. We describe a set of experiments in which

flexural vibration of aluminum beams over a broad frequency range is damped by introduction of a layer of lossy low-

wave-speed foam. At frequencies high enough to set up standing waves through the thickness of the foam, loss factors as

high as 0.05 can be obtained with a foam layer whose mass is 3.9% of that of the beam. We model the foam as a continuum

in which waves of dilatation and distortion can propagate, obtain approximate solutions for the frequency response of the

system by means of a modal expansion, and find that the predictions are in close agreement with the measured responses.

Finally, we develop a simple approximation for the system loss factor based on the complex wavenumber associated with

flexural vibration in an infinite beam.

r 2005 Published by Elsevier Ltd.
1. Introduction

The introduction of a granular material or foam into a structure or machine is a relatively simple and low-
cost approach to attenuation of vibration. Traditionally, dense granular fills (such as sand, lead shot, or steel
balls) have been selected for such applications in order to obtain strong coupling between the structure and the
granular material. Many researchers have studied the use of granular materials for vibration suppression.
Panossian [1,2] carried out several experiments in which structures are filled with various types of particles
(metallic, non-metallic, and even liquid particles) of various shapes and sizes at appropriate locations for
attenuation of sound and vibration. Papalou and Masri [3,4] have developed an approximate method to
predict the damping attained by dampers filled with steel balls of various sizes. Cremer and Heckl [5] suggested
that a granular material such as sand can be modeled as a continuum, and that damping in a structure filled
with such a granular material can be increased by adjusting dimensions so that standing waves occur in the
granular material at the resonant frequencies of the structure.
ee front matter r 2005 Published by Elsevier Ltd.
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Richards and Lenzi [6] carried out several experiments on sand-filled tubes and have studied the influence of
the quantity of sand, grain size, cavity shape and size, and the direction and amplitude of excitation. They
report that damping attains a maximum at frequencies where resonances can be set up in the granular
medium. Bourinet and Le Houedec [7] expanded on the ideas of Cremer and Heckl and developed a
quantitative model for the vibration of beams filled with granular materials. They model compressive waves in
the granular material in the direction transverse to the vibration to develop an ‘‘apparent mass’’, which they
couple to a Timoshenko beam. However, these high-density fills add a great deal of mass to a structure and
hence are rarely used where weight is a concern.

Experiments by Fricke [8] showed that a low-density granular fill can provide high damping of structural
vibration over a broad range of frequencies. Varanasi [9] and Varanasi and Nayfeh [10] performed further
experiments on beams with low-density granular fills and, by treating the fill as a compressible fluid in which
dilatation waves can propagate, made quantitative predictions of the system response. They predicted that
similar damping could be attained using any lossy medium (such as a foam) in which the speeds of wave
propagation are low enough that waves can be set up in the medium at the frequencies of interest.

In this paper, we summarize a set of experiments on aluminum beams coupled to free and covered layers of
a low-density foam. Then, modeling the foam as an isotropic continuum, we predict the response of the
beam–foam systems based on a full modal expansion in terms of the mode shapes of the undamped beam.
Finally, based on the complex wavenumber, we develop a simpler approximation for the loss factor associated
with flexural vibration of such systems.

2. Experiments

We study beam–foam systems of the configuration shown in Fig. 1. An aluminum beam of rectangular cross
section 38:1� 12:7mm is coupled to a 12.7mm thick layer of EAR C-3201 [11] energy-absorbing foam using
3M Contact 80 neoprene adhesive [12]. The density of the foam is 104:1 kg=m3 and, as detailed in the
appendix, we determine that its Poisson’s ratio n is approximately 0.36 and its complex extensional modulus E

is approximately 2075o1=2ð1þ 0:8jÞPa (for o between 300 and 12 600 rad/s). Based on these measurements, we
calculate the complex wave speeds in dilatation and shear at 1000Hz to be 42:5ð1þ 0:35jÞm=s and
25:7ð1þ 0:35jÞm=s, respectively.

In all of the experiments, the beams are suspended by soft elastic strings to simulate free–free boundary
conditions. An impulsive excitation is provided by an impact hammer (PCB333A30 [13]) at one end of the
beam, and the response is measured by an accelerometer (PCB353B11 [13]) located at the other end of the
beam.

In Fig. 2, we plot the force-to-acceleration frequency response obtained for a beam of length 1448mm with
and without the foam layer. As expected, the beams without foam exhibit very little damping, with the loss
factor Zo0:0001 for each of the modes. When a layer of foam of thickness 12.7mm is glued to the beam, the
increase in damping in the first four modes is very small, but there is a significant increase in that of the fifth
and higher modes. Based on the speeds of sound in the foam, we find that the sixth mode occurs in a frequency
x
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Fig. 1. Schematic of the beam–foam system.
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Fig. 2. Measured force-to-acceleration frequency responses for a beam of length 1448mm under impact excitation: without foam (dotted)

and with foam (solid).
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Fig. 3. Measured force-to-acceleration frequency responses under impact excitation: without foam (dotted), with foam (dashed), and with

an auxiliary 0.05mm thick steel layer (solid).
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range where quarter-wavelength dilatation and half-wavelength shear waves can be set up through the
thickness of the foam.

Next, in Figs. 3 and 4, we plot the force-to-acceleration frequency-response curves measured for sandwich
beams formed by the addition of thin ‘‘auxiliary’’ metal layers atop the layer of foam. With the addition of the
steel layers with thicknesses of 0.05 and 0.10mm, the damping is increased in the fifth and higher modes. We
find that the addition of these steel layers has resulted in a significant increase in damping at lower frequencies
with a relatively small increase in mass (1.2% and 2.4% for the 0.05 and 0.10mm thick steel layers,
respectively).

3. Model

In this section, we develop a model by which the responses measured in Section 2 can be predicted. Consider
a beam of length L to which is attached a layer of foam as shown in Fig. 1. The beam is excited by a point-
harmonic force at a frequency o and distance xf from one end of the beam. We employ a simple
Euler–Bernoulli model for the beam and consider the foam to be a lossy and isotropic continuum in which
waves of dilatation and distortion can propagate.
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Fig. 4. Measured force-to-acceleration frequency responses under impact excitation: without foam (dotted), with foam (dashed), and with

an auxiliary 0.10mm thick steel layer (solid).
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The foam used in the experiments described in Section 2 is an elastic-porous medium in which frame-borne
and air-borne waves can propagate (e.g., Refs. [14,15]). The stress induced on the beam by the air-borne waves
scales as the product of the bulk modulus of the air in the pores times the volumetric strain in air. Hence
although these waves can have a significant influence on sound and noise transmission, we can safely neglect
their effect on the vibration of the beam in comparison to the effect of the frame-borne waves. We therefore
treat the foam as an isotropic continuum in which frame-borne waves of dilatation and distortion arising from
the bulk properties of the material can propagate. We characterize the foam by a loss factor Z, complex
Young’s modulus of elasticity E ¼ Êð1þ jZf sgnoÞ, and Poisson ratio n. We detail in the appendix a set of
measurements carried out to determine these properties for the foam used in our experiments.
3.1. Equations of motion

Consider steady vibration of the beam–foam system of Fig. 1 under harmonic excitation at a frequency o by
a point force ReðFdðx� xf Þe

jotÞ. We denote the vibratory deflection of the beam under such an excitation by
ReðV ðx;oÞejot) and the displacements of the foam in the x and y directions by Reðuðx; y;oÞejot) and
Reðvðx; y;oÞejot), respectively. The displacements uðx; y;oÞ and vðx; y;oÞ in the foam are governed by the
second-order wave equations of a linear and isotropic continuum (e.g., Ref. [16])

ðlþ 2GÞuxx þ Guyy þ ðlþ GÞvxy þ ro2u ¼ 0, (1)

Gvxx þ ðlþ 2GÞvyy þ ðlþ GÞuxy þ ro2v ¼ 0, (2)

where the subscripts denote partial differentiation and r, l ¼ nE=ð1þ nÞð1� 2nÞ, and G are, respectively, the
density, complex Lamé constant, and complex shear modulus of the foam.

At the interface of the beam and foam (that is, at y ¼ 0), the normal stress syðx; 0;oÞ in the foam contributes
to a force in the y direction whereas the shear stress txyðx; 0;oÞ in the foam results in a moment about the
neutral axis. We therefore write the equation governing the transverse deflection V of the beam in the form

D
q4V
qx4
�mo2V � bsyðx; 0;oÞ �

bh

2

qtxyðx; 0;oÞ
qx

¼ Fdðx� xf Þ, (3)

where b and h are, respectively, the width and height of the beam’s cross section, D is its flexural stiffness, and
m is its mass per unit length.
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3.2. Boundary conditions for the foam

At the interface between the foam and beam (at y ¼ 0), the displacements in the foam must match those of
the surface of the beam. Hence we write

vðx; 0;oÞ ¼ V ðx;oÞ, (4)

uðx; 0;oÞ ¼ �
h

2

qV ðx;oÞ
qx

. (5)

At the free surface of the foam (at y ¼ hf ), the normal and shear stresses must vanish. Hence we have

luxðx; hf ;oÞ þ ðlþ 2GÞvyðx; hf ;oÞ ¼ 0, (6)

uyðx; hf ;oÞ þ vxðx; hf ;oÞ ¼ 0. (7)

Because the foam layers used in the experiments are long and slender, and strong damping is observed at
frequencies at or above the frequencies at which the lengths of waves in the foam are on the order of the
thickness of the foam, we do not enforce the boundary conditions on the ends of the foam (at x ¼ 0 and L).
This simplification allows us to reasonably approximate the behavior of the foam over most of the length of
the beam and to obtain relatively simple predictions of the effect of the foam on the vibration of the beam.

3.3. Modal expansion

We seek solutions of the equations of motion (1)–(3) along with the boundary conditions (4)–(7). In this
section, we compute the frequency response of the beam–foam system by expanding the deflection of the beam
in terms of the mode shapes of an undamped beam, solving for compatible responses in the foam, and
summing to obtain the forced response at each frequency.

We expand the deflection of the beam in terms of the eigenfunctions of an undamped beam as

V ðx;oÞ ¼ V01ðoÞ þ V02ðoÞðx� L=2Þ þ
XN

n¼1

VnðoÞðanðxÞ þ bnðxÞÞ. (8)

The first two terms in this expansion represent pure translation and rotation of the beam. The remaining terms
in the expansion are the flexible modes of the beam, where the anðxÞ and bnðxÞ denote, respectively, the
propagating and evanescent components of the nth flexible mode of the beam. For the nth mode of a free–free
beam, anðxÞ and bnðxÞ are given by

anðxÞ ¼ sinðknxÞ þ pn cosðknxÞ, (9)

bnðxÞ ¼ sinhðknxÞ þ pn coshðknxÞ, (10)

where kn is the wavenumber associated with the nth mode and pn is a constant given by

pn ¼
sinðknLÞ � sinhðknLÞ

coshðknLÞ � cosðknLÞ
. (11)

3.3.1. Contribution of beam flexible modes

Based on the form of the modal expansion (8) and boundary conditions (4) and (5), we take the
displacements in the foam to be

vðx; y;oÞ ¼
XN

n¼1

wnðy;oÞanðxÞ þ
XN

n¼1

xnðy;oÞbnðxÞ, (12)

uðx; y;oÞ ¼
XN

n¼1

fnðy;oÞa
0
nðxÞ=kn þ

XN

n¼1

cnðy;oÞb
0
nðxÞ=kn, (13)
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Table 1

Form of the coefficient matrix An in Eq. (14)
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�
ro2 � k2

nðlþ 2GÞ

G
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lþ G

G
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0 0 �
ro2 þ k2

nðlþ 2GÞ

G
0 0 0 0 �

lþG

G
kn

0 0 0 0 0 1 0 0

0
lþG

lþ 2G
kn 0 0 �

ro2 � k2
nG

lþ 2G
0 0 0
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nG
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where the primes denote the first derivative and the wn, xn, fn, and cn are yet to be determined functions of y

and o. Substituting the above expansions for u and v into the wave equations (1) and (2), we obtain a system
of ordinary differential equations that can be rearranged into the first-order form

X 0n ¼ AnX n, (14)

where the vector X n is composed of

X n ¼ ðfn f0n cn c0n wn w0n xn x0nÞ
T (15)

and the matrix An is given in Table 1.
Next, we solve Eq. (14) subject to the boundary conditions (4)–(7) to obtain

X n ¼ Bne
LnycnVn, (16)

where the Bn and Ln are, respectively, the matrices of eigenvectors and eigenvalues obtained by diagonalizing
the An, and the cn are constant vectors whose elements are determined by enforcing the boundary conditions
(4)–(7). Thus, having obtained the functions wn, xn, fn, cn and in terms of the V n, we compute the stresses
syðx; 0Þ and txyðx; 0Þ at the interface of the foam. These, along with the expansion (8), are then substituted into
Eq. (3) governing the beam deflection. A Galerkin projection onto the beam mode shapes yields a system of
linear algebraic equations in the Vn whose order is equal to the number of terms in the expansion.

3.3.2. Contribution of beam rigid-body modes

When the beam undergoes pure translational motion, the displacement u in the x direction is zero
everywhere in the foam. As a result, plane waves are excited in the y direction and the wave equations (1)–(2)
reduce to the following simple form:

ðlþ 2GÞvyy þ ro2v ¼ 0. (17)

This equation is solved subject to the boundary conditions (4)–(7) to obtain the displacement vðy;oÞ in the
foam, and thence the normal stress exerted by the foam on the beam and the corresponding response V01ðoÞ
of the beam.

When the beam undergoes a rotational motion as described by the second term in Eq. (8), the boundary
conditions on the foam require that the displacement u in the x direction in the foam be constant at the
foam–beam interface and the displacement v in the y direction be linear in x at the interface of the foam and
the beam. We therefore take the displacements in the foam to be of the form

vðx; y;oÞ ¼ ðx� L=2Þw0ðy;oÞ, (18)

uðx; y;oÞ ¼ f0ðy;oÞ. (19)
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Substituting these displacements into the wave equations (1)–(2), we obtain differential equations for w0 and
f0 in the form

ðlþ 2GÞw000 þ ro2w0 ¼ 0, (20)

Gf000 þ ðlþ 2GÞw00 þ ro2f0 ¼ 0. (21)

Imposing the boundary conditions (4)–(7), we solve for the displacements in the foam and stresses exerted by
the foam on the beam and then obtain the coefficient V 02ðoÞ in the expansion (8).
3.3.3. The total response

After computing the contributions to the displacement of the beam from the flexible and rigid-body modes,
we write the non-dimensional accelerance R at the location of the sensor xs as

R ¼
mo2VL

F
¼

mo2L

F

� �
V 01 þ V 02ðxs � L=2Þ þ

XN

n¼1

V n½anðxsÞ þ bnðxsÞ�

 !
. (22)

Finally, we plot in Fig. 5 the computed force-to-acceleration frequency response and compare it with the
measured response. We find that there is good agreement between the measured and predicted frequency
responses. For each resonance, we extract the resonant frequency and loss factor from the measurements as
well as the computed frequency responses using the modal curve-fitting software Star Modal [17] and compare
their values in Table 2.
3.4. Sandwich beam

In this section, we develop a model for the sandwich beam formed by coupling an auxiliary layer to the
foam–beam system discussed in the previous section. The auxiliary layer at y ¼ hf changes the boundary
conditions on the foam given by Eqs. (6) and (7). In the sandwich beam, we require at y ¼ hf that the
displacements vðx; hf ;oÞ and uðx; hf ;oÞ in the foam match those in the auxiliary layer. Hence, we have

vðx; hf ;oÞ ¼W ðx;oÞ, (23)

uðx; hf ;oÞ ¼
ha

2

qW ðx;oÞ
qx

, (24)

where ReðW ðx;oÞejot) and ha are, respectively, the deflection and thickness of the auxiliary beam. Taking into
account the normal stress syðx; hf Þ and shear stress txyðx; hf Þ in the foam, we write the equation governing the
deflection W of the auxiliary beam in the form

Da

d4W

dx4
�mao2W þ bsyðx; hf ;oÞ �

bha

2

qtxyðx; hf ;oÞ
qx

¼ 0, (25)

where Da and ma are, respectively, the flexural stiffness and the mass per unit length of the auxiliary beam.
To obtain the force-to-acceleration frequency response for the sandwich beam, we must simultaneously

solve the wave equations (1)–(2) and the beam-deflection equations (3) and (25) subject to the boundary
conditions (6), (7), (23), and (24). As in Section 3.3, we expand the deflection of the principal beam according
to Eq. (8) and the deflection W of the auxiliary beam as

W ðx;oÞ ¼W 01ðoÞ þW 02ðoÞðx� L=2Þ þ
XN

n¼1

W nðoÞðanðxÞ þ bnðxÞÞ. (26)

Compatible displacements in the foam are then written as in Eqs. (12) and (13) for the flexible modes, and as
described in Section 3.3.2 for the rigid-body modes.

As in the case of the free foam layer, we determine the response in the foam corresponding to the nth beam
mode by solving Eq. (14), but in this case use the boundary conditions (6), (7), (23), and (24). We obtain an
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Fig. 5. Comparison of measured and predicted force-to-acceleration frequency responses for the beam with a free foam layer: measured

(dotted) and predicted (solid).

Table 2

Comparison of measured and predicted modal loss factors for the beam with a free foam layer: the measurement and curve-fitting process

for the loss factor yields results repeatable to �5%

Frequency (Hz) Loss factor

Measured Predicted

32.4 0.0002 0.0001

87.7 0.0010 0.0002

169.0 0.0010 0.0010

277.9 0.0018 0.0020

413.9 0.0034 0.0048

575.7 0.0080 0.0100

763.1 0.0180 0.0208

979.9 0.0424 0.0400

1240.0 0.0522 0.0480

1530.0 0.0322 0.0348

1830.0 0.0206 0.0236
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expression of the form

X n ¼ Bne
LnyðcnV n þ dnW nÞ, (27)

where the Bn and Ln are, respectively, the matrices of eigenvectors and eigenvalues obtained by diagonalizing
the An, and the cn and dn are constant vectors whose elements are determined by enforcing the boundary
conditions (6), (7), (23), and (24). Based on this solution, we compute the stresses sy and txy and substitute
them into Eqs. (3) and (25) and project in turn onto the beam modes to obtain a set of linear equations in the
V n and W n. Finally, we solve this system of equations to determine the coefficients V n and W n in the
expansions (8) and (26). As before, the accelerance R at the sensor location is computed based on the V n

according to Eq. (22). The force-to-acceleration frequency responses thus obtained are in good agreement with
the measured responses. They are plotted in Figs. 6 and 7.

4. Complex wavenumber approximation

The frequency responses based on full modal expansions agree closely with the experiments, but are
cumbersome for design or quick calculation. In this section, we compute the complex wavenumber associated
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Fig. 7. Comparison of the measured and predicted force-to-acceleration frequency responses for a sandwich beam with a 0.10mm steel

auxiliary layer: measured (dotted), predicted (solid).
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Fig. 6. Comparison of the measured and predicted force-to-acceleration frequency responses for a sandwich beam with a 0.05mm steel

auxiliary layer: measured (dotted), predicted (solid).
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with harmonic motion of an infinitely long beam–foam system, and thence obtain a simpler estimate of the
system loss factor.

Consider again the beam–foam system sketched in Fig. 1, but extending from x ¼ �1 to þ1. We write the
steady harmonic bending deflection V ðx;oÞ of the beam in terms of decaying right and left traveling waves as

V ðx;oÞ ¼ VþðoÞe�jkbx þ V�ðoÞe jkbx (28)

and seek solutions for the complex wavenumber kb. Once kb has been computed for a given frequency o, the
loss factor can be computed from

Z ¼
Imð1=k4

bÞ

Reð1=k4
bÞ
. (29)

Examining the form of the boundary conditions (4) and (5), we assume displacements in the foam in the y and
x directions, respectively, in the form

vðx; y;oÞ ¼ ½VþðoÞe�jkbx þ V�ðoÞe jkbx�cðy=hf Þ, (30)

uðx; y;oÞ ¼ �j½VþðoÞe�jkbx � V�ðoÞe jkbx�fðy=hf Þ, (31)
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where c and f are yet-to-be-determined functions of the dimensionless coordinate y=hf through the thickness
of the foam. Substituting the preceding forms into Eqs. (1) and (2) governing wave propagation in the foam,
we obtain coupled second-order ordinary differential equations for c and f in the form

c00 ¼
hf kb

2ð1� nÞ
f0 þ

1� 2n
2ð1� nÞ

� �
ðhf kbÞ

2
�
ðohf =cÞ2

1þ jZf

" #
c, (32)

f00 ¼ �
hf kb

1� 2n
c0 þ ðhf kbÞ

2
�
ðohf =cÞ2

1þ jZf

" #
2ð1� nÞ
1� 2n

� �
f, (33)

where the primes denote differentiation, we have made use of l ¼ 2nG=ð1� 2nÞ, and c2ð1þ jZf Þ is the square
of the complex speed of propagation of plane compression waves in the foam given by

c2ð1þ jZf Þ ¼
lþ 2G

r

� �
. (34)

In terms of f and c, the boundary conditions on the foam given by Eqs. (4)–(7) become

fð0Þ ¼ �
hkb

2
; cð0Þ ¼ 1; c0ð1Þ ¼

nhf kbfð1Þ
1� n

; and f0ð1Þ ¼ �hf kbcð1Þ (35)

and the dispersion relation (3) for the beam coupled to a layer of foam becomes

Dk4
b �mo2 � b ðl� GÞ

hk2
b

2
þ

lþ 2G

hf

c0ð0Þ �
Ghkb

2hf

f0ð0Þ
� �

¼ 0. (36)

We seek a solution for kb that satisfies simultaneously this dispersion relation as well as the differential
equations (32) and (33) and boundary conditions (35) governing wave propagation in the foam.

We obtain an iterative solution for kb by first taking k4
b ¼ mo2=D; substituting this value into Eqs. (32),

(33), and (35); and solving for the response in the foam. An improved estimate ~kb is then obtained from Eq.
(36) according to

D ~kb
4
¼ mo2 þ b ðl� GÞ

hk2
b

2
þ

lþ 2G

hf

c0ð0Þ �
Ghkb

2hf

f0ð0Þ
� �

(37)

and in turn substituted into Eqs. (32), (33), and (35) to solve for the response in the foam. The process is
repeated until the estimates converge. For parameter values comparable to those in our experiments (where
the mass of the foam is much smaller than the mass of the beam), the first estimate of the loss factor is quite
good, usually within a few parts per thousand of its final value.

Therefore, a reasonable estimate of the loss factor can be made by substitution of the first iterate obtained
from Eq. (37) directly into the expression (29) for the loss factor:

Z �
b Im½ðl̄� ḠÞk2

bh=2þ ðl̄þ 2ḠÞc̄
0
ð0Þ=hf � Ḡf̄

0
ð0Þkbh=2hf �

mo2 þ bRe½ðl̄� ḠÞk2
bh=2þ ðl̄þ 2ḠÞc̄

0
ð0Þ=hf � Ḡf̄

0
ð0Þkbh=2hf �

. (38)

The second term in the denominator is negligible in comparison with the first, which represents the inertia of
the beam. We therefore make the further approximation that

Z �
rbhf

m

c

ohf

� �2

Im ð1� jZf Þ
4n� 1

4ð1� nÞ
k2

bhhf þ c̄
0
ð0Þ �

1� 2n
4ð1� nÞ

kbhf̄
0
ð0Þ

� �� �
, (39)

where k4
b ¼ mo2=D. Thus, according to this approximation, the loss factor of the system scales directly with

rbhf =m, the ratio of the mass of the foam to the mass of the beam. The dependence on the dimensionless
frequency ohf =c is somewhat more complicated because it appears in the equations governing f and c. The
dimensionless parameter hf kb (which is 2p times the ratio of the thickness of the foam to the length of flexural
waves in the beam) also depends on frequency.

Consider again the experiment with the free foam layer, whose response is compared to that predicted by
the full expansion in Fig. 5 and Table 2. The loss factors (normalized by mass ratio rbhf =m) obtained from the
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experiment and full expansion are plotted as asterisks and plus signs, respectively, in Fig. 8. The estimate for
the loss factor obtained by iteration on Eqs. (32), (33), (35), and (37) is plotted as a solid line, and that
obtained without iteration from Eq. (39) is plotted as a series of circles. The various approximations are in
good agreement with the experiments.

5. Conclusions

Significant damping can be attained with little added mass by coupling to a structure a lossy medium with
low density and low speeds of wave propagation. At frequencies high enough to favor wave propagation
through the thickness of the low-wave-speed medium, strong interactions occur between it and the vibrating
structure, resulting in considerable damping. Such damping treatments (whether the low-density medium is
powder, foam, or some other material) offer a low-cost method of attaining broad band damping in structures
and machines with little creep, and has been applied to longitudinal and flexural vibration in belt-drives,
compliant mechanisms, and precision structures [9].

For higher-order flexural, extensional, or torsional modes of a structure coupled to a low-wave-speed
medium, good estimates of the damping over a given frequency range can be obtained by estimating the
complex-wavenumber associated with wave propagation. For lower-order modes, the mode shape of the
structure and its coupling to the medium must be taken into account.

Appendix. Material properties of the foam

In this section, we document a set of experiments conducted to determine the complex elastic moduli of the
foam. The extensional and shear moduli are determined by exciting thin layers of foam sandwiched between
aluminum blocks as shown in Fig. 9. We impose on the samples a harmonic displacement provided by an
electromagnetic shaker and measure the force transmitted by the foam to obtain the acceleration-to-force
frequency responses plotted in Fig. 10.

Noting that the magnitude of the response MðoÞ has no resonance peaks and the phase yðoÞ is more or less
constant, we conclude that for the range of frequencies used in these experiments, wave propagation in the
foam is negligible. We therefore treat it as a simple hysteretic spring (e.g., Refs. [18,19]) and compute its
complex extensional modulus ÊðoÞð1þ jZf ðoÞÞ from

ÊðoÞð1þ jZf ðoÞÞ ¼
o2MðoÞð1� j tan yðoÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðtan yðoÞÞ2
q t

A
, (40)
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Fig. 10. Measured acceleration-to-force frequency response of the systems shown in Figs. 9(a) and (b), respectively.
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Fig. 9. Schematic of the experiment employed to determine (a) the extensional modulus and (b) the shear modulus of the foam.
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where t and A are, respectively, the thickness and the cross-sectional area of the layer of foam. In Fig. 11, we
plot the real part of the modulus E as a function of frequency and find that the extensional modulus is
proportional to the square root of frequency. Because the phase of the acceleration-to-force transfer function
is approximately �140� over the measured range of frequencies we estimate the loss factor of the foam in
extension to be approximately 0.8. Carrying out a similar calculation, we determine the complex shear
modulus and plot the result as a dotted line in Fig. 11. The ratio of the extensional and shear moduli is nearly
constant over this range of frequencies, and the Poisson’s ratio is approximately 0.36.
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